Assignment 4

Coverage: 15.5 in Text.
Exercises: 15.5. no 3, 4, 21, 24, 25, 27, 29, 32, 33, 38, 39, 42.
Submit 15.5 no. 24, 27, 29, and 33 by Feb 14.

Supplementary Problems

1. Find the equations of the planes passing through the origin and (a) $(1,2,3),(0,-2,0)$ and (b) $(0,2,-1),(3,0,5)$.
2. Find the equation of the plane passing the points $(1,0,-1),(4,0,0),(6,2,1)$.

The Equation of a Plane

The equation of a plane in space is in the form

$$
a x+b y+c z=d
$$

and $d=0$ if and only if the plane passes through the origin. Given three points in space $\mathbf{0}=(0,0,0), \mathbf{u}_{1}=\left(x_{1}, y_{1}, z_{1}\right), \mathbf{u}_{2}=\left(x_{2}, y_{2}, z_{2}\right)$, the equation of the plane can be determined by the following formula:

$$
(a, b, c)=\mathbf{u}_{1} \times \mathbf{u}_{2},
$$

in $a x+b y+c z=0$. Here \times is the cross product for vectors.
When the plane does not pass through the origin, the three points are $\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}$. Let $\mathbf{v}_{1}=$ $\mathbf{u}_{1}-\mathbf{u}_{0}, \mathbf{v}_{2}=\mathbf{u}_{2}-\mathbf{u}_{0}$. Then

$$
(a, b, c)=\mathbf{v}_{1} \times \mathbf{v}_{2},
$$

in the equation $a x+b y+c=d$. The number d can be obtained by $d=a x_{0}+b y_{0}+c z_{0}$ where $\mathbf{u}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$.
Let us look at one example. Find the equation of the plane passing through $(0,0,0),(-1,2,0),(0,0,6)$. The cross product of $(-1,2,0)$ and $(0,0,6)$ is $(12,6,0)$. Hence the equation of this plane is $12 x+6 y=0$ or $2 x+y=0$.
Next, find the equation of the plane passing through $(1,0,1),(0,2,0),(2,0,-3)$. Using $(0,2,0)-$ $(1,0,1)=(-1,2,-1)$ and $(2,0,-3)-(1,0,1)=(1,0,-4)$ and $(-1,2,-1) \times(1,0,-4)=(-8,-5,-2)$. Hence the equation is $-8 x-5 y-2 z=d$. Plugging in $(1,0,1), d=-8-2=-10$, so the equation is $-8 x-5 y-2 z=-10$ or $8 x+5 y+2 z=10$.

